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Abstract

We compare three least-squares finite element reformulations of the Stokes equations, paying particular attention to

mass conservation. The first problem we approximate has a simple analytical solution over a convex region. Even for

this simple problem, without special treatment of the conservation of mass term, very poor numerical solutions may

result. Sufficiently weighting this term leads to a dramatic improvement in the results over a range of test problems.
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1. The least-squares finite element method

In recent years there has been considerable interest in the least-squares finite element method as a way of

obtaining solutions of systems of partial differential equations; see for instance [8,25]. This technique seems

promising as the linear systems which arise are positive-definite and symmetric and hence amenable to fast

direct or iterative solution methods.

For the system of Neq partial differential equations
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Lu� fk k20 ¼
XN eq

i¼1

Liu� fik k20 ð2Þ
is defined. We let u = (u1,u2,. . .,um)
T 2 U and v = (v1,v2,. . .,vm)

T 2 V where functions in U satisfy the bound-

ary conditions (1) and the functions in V satisfy the homogeneous form of these conditions. The function

u 2 U such that the least-squares functional (2) is minimised satisfies the equation
Z
X

XN eq

i¼1

Liu� fið ÞLiv dX ¼ 0 8v 2 V :
Usually the differential operator is first-order requiring at most H1 regularity in U and V. Higher order

equations are reformulated as a first-order system; see [16,26,29]. Examples in fluid dynamics of systems

recast in this way are the Stokes and Navier–Stokes equations for incompressible flow [4], the convec-

tion–diffusion equations [22] and the Stokes equations for compressible flow [14]. However, (2) is provably

optimal only for elliptic systems of Petrovsky type; see [33].

It has been observed in solutions of a first-order reformulation of the Stokes equations that mass con-

servation is not generally well enforced; see [18,20]. Particular attention was paid in these references to the
loss of mass in solutions in a multiply connected domain. Here, we consider solutions of a number of dif-

ferent first-order reformulations of the Stokes equations. We show that even in a convex region the loss of

mass in a numerical solution obtained using the least-squares method can be disastrous.
2. The Stokes equations for incompressible flow in the plane

For fluid of velocity ~u ¼ ðu1; u2Þ and at pressure p the Stokes equations for incompressible, steady flow
can be expressed as
�mr2~uþrp ¼ ~f ; ð3Þ

r �~u ¼ 0: ð4Þ

The parameter m is the viscosity. The enclosed flow conditions for this problem are
~u ¼ gbðx; yÞ on C; ð5ÞZ
X
p dX ¼ 0: ð6Þ
2.1. The stress and stream function reformulation

In [31], a first-order system of equations is derived which is equivalent to (3) and (4) at ~f ¼ 0. This sys-

tem is in terms of the stream and stress functions. The stream function w is defined so that
u1 ¼ wy ; ð7Þ

u2 ¼ �wx: ð8Þ

The stresses can be represented by a 2 · 2 symmetric tensor
r ¼
r11 r12

r21 r22

� �
:
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For fluids in steady flow and in the absence of body forces the divergence of the stress tensor is zero
r � r ¼ 0: ð9Þ

Postulating the existence of a sufficiently differentiable stress function / and setting
r ¼
/yy �/xy

�/xy /xx

 !
ð10Þ
ensures that (9) is true.
For incompressible fluids
r ¼ �pI þ 2md;
where I is the identity matrix and d is the deformation tensor
d ¼ 1

2

2
ou1
ox

ou1
oy

þ ou2
ox

ou1
oy

þ ou2
ox

2
ou2
oy

0
BB@

1
CCA:
So using the variables defined in (7), (8) and (10) we have
/yy ¼ �p þ 2mwxy ;

/xx ¼ �p � 2mwxy ;

�/xy ¼ �mwxx þ mwyy :
Eliminating p we have
�/xx þ /yy ¼ 4mwxy ; ð11Þ

�/xy ¼ �mwxx þ mwyy : ð12Þ
By introducing the variables
U 1 ¼ /x; U 2 ¼ /y ; U 3 ¼ wx; U 4 ¼ wy
we are able to write (11) and (12) as a first-order system
� oU 1

ox
þ oU 2

oy
� 2m

oU 3

oy
� 2m

oU 4

ox
¼ f1; ð13Þ

oU 1

oy
þ oU 2

ox
� 2m

oU 3

ox
þ 2m

oU 4

oy
¼ f2; ð14Þ

oU 1

oy
� oU 2

ox
¼ f3; ð15Þ

2m
oU 3

oy
� 2m

oU 4

ox
¼ f4; ð16Þ
see [31]. For the Stokes system without body forces the terms f1–f4 are all zero. To obtain a least-squares

solution we minimise the functional
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S ¼ � oU 1

ox
þ oU 2

oy
� 2m

oU 3

oy
� 2m

oU 4

ox
� f1

����
����
2

0

þ oU 1

oy
þ oU 2

ox
� 2m

oU 3

ox
þ 2m

oU 4

oy
� f2

����
����
2

0

þ oU 1

oy
� oU 2

ox
� f3

����
����
2

0

þ 2m
oU 3

oy
� 2m

oU 4

ox
� f4

����
����
2

0

: ð17Þ
We shall henceforth refer to the system of Eqs. (13)–(16) as the S formulation of the Stokes system and
shall call (17) the S functional.

Four different forms of boundary condition for the system (13)–(16) are considered in [31]. These are
U 1 ¼ g1 x; yð Þ; U 2 ¼ g2 x; yð Þ on C; ð18Þ

U 3 ¼ g1 x; yð Þ; U 4 ¼ g2 x; yð Þ on C; ð19Þ

U 1;U 2ð Þ � n̂ ¼ g1 x; yð Þ; U 3;U 4ð Þ � ŝ ¼ g2 x; yð Þ on C; ð20Þ

U 1;U 2ð Þ � ŝ ¼ g1 x; yð Þ; U 3;U 4ð Þ � n̂ ¼ g2 x; yð Þ on C: ð21Þ

Further pointwise constraints Ki(U), i = 1,. . .,Nc may also be required on the solution when the condi-

tions (18) or (19) are applied; see [31]. The boundary conditions (18) specify the stresses on the boundary

whilst (19) correspond to the enclosed flow conditions (5) and (6) on the second-order system (3) and (4).

The boundary conditions (20) give the normal velocities and tangential stresses whilst (21) give tangential

velocities and normal stresses. The system (13)–(16) with any of these boundary conditions (18)–(21) is

shown in [31] to be of Petrovsky type [33] in regions with smooth boundaries. Hence, for

U 2 [H1(X) \ Hl+1(X)]4, l = �1, 0 the inequality
kUklþ1;X 6 C kLUkl;X þ kBUklþ1
2
;C þ

XNc

i¼1

j KiðUÞ j
 !

;

holds and with homogeneous boundary conditions S is equivalent to a norm on H1
1

C
kUk21 6 S 6 CkUk21:
Hence it can be shown that approximations on regions with smooth boundaries using linear elements

converge at order h in an H1 metric; see [31,32].

2.2. The velocity–vorticity–pressure reformulation

Another first-order recasting of the Stokes equations is the velocity–vorticity–pressure formulation; see

[17,27]. This is probably the formulation most frequently used in work appearing in published studies of

least-squares methods; see for example [1,5,7,13,18,20,21,25,28,34].

In deriving this system we utilise the identity
�r2~u ¼ r�r�~u ¼ r� x;
where x is the vorticity and~u ¼ ðu1; u2Þ. This identity holds if r:~u ¼ 0. The system (3) and (4) can then be

written as
mr� xþrp ¼ ~f ; ð22Þ

x�r�~u ¼ 0; ð23Þ
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r �~u ¼ 0: ð24Þ

We shall use the symbol J to denote this system and the corresponding L2 least-squares functional
J ¼ kmr� xþrp �~f k20 þ m2kx�r�~uk20 þ m2kr �~uk20; ð25Þ

see [13,19,20]. In our experiments we have enforced the enclosed flow conditions (5) and (6). But the system

(22)–(24) with enclosed flow conditions is not elliptic in the sense of Petrovsky and hence the least-squares

functional (25), which is simply an L2 functional of the form (2), is not fully H1 coercive. Hence we expect
convergence of only order h in L2. However, it has been established theoretically that when the conditions

(5) and (6) are enforced the functional
J 1 ¼ kmr� xþrp �~f k20 þ m2kx�r�~uk21 þ m2kr �~uk21 ð26Þ

is coercive in [H2(X)]2 · H1(X) · H1(X); see [7,8,20]. We let s > 0 and define the spaces
Hs
0 Xð Þ ¼ v 2 Hs Xð Þ : v ¼ 0 on Cf g;

L2
0 Xð Þ ¼ v 2 L2 Xð Þ :

Z
X
v dX ¼ 0

� �
;

~H
s
Xð Þ ¼ Hs Xð Þ \ L2

0 Xð Þ:

Furthermore, we let ~u 2 ½H 2

0ðXÞ�
2
; p 2 ~H

1ðXÞ and x 2 H 1ðXÞ. Then it can be shown that
1

C
k~uk22 þ kpk21 þ kxk21
� �

6 J 1ð~u; p;xÞ;
see [8]. Also
J 1ð~u; p;xÞ 6 C k~uk22 þ kpk21 þ kxk21
� �

:

So the solutions of (26) satisfy the relation
k~uk2 þ kpk1 þ kxk1 6 Ck~f k0;

see [7].

2.3. The velocity–velocity gradient–pressure reformulation

A third planar formulation is the velocity–velocity gradient–pressure formulation, as proposed in [12];
see also [29]. A very similar reformulation has been used in the application of least-squares methods to

the solution of the linear elasticity equations, which are related to the Stokes equations; see [12], in which

both are considered as special cases of the system
�mr2~uþrp ¼ ~f ; ð27Þ

r �~uþ dp ¼ g: ð28Þ

The parameter d is zero for the Stokes equations. A new variable U is introduced
U ¼ r~uT ¼

ou1
ox

ou1
oy

ou2
ox

ou2
oy

0
BB@

1
CCA: ð29Þ
Eqs. (27) and (28) can be written in the form
� m r � Uð ÞT þrp ¼ ~f ;

r �~uþ dp ¼ g;

U �r~uT ¼ 0:
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In [12] this form of the system is designated as G1. This system with conditions (5) and (6) is not fully H1

coercive and an L2 least-squares functional of the form (2) is inappropriate. The G1 least-squares functional

is
G1ðU ;~u; pÞ ¼ k � m r � Uð ÞT þrp �~f k2�1 þ m2kr �~uþ dp � gk20 þ m2kU �r~uTk20: ð30Þ

The supplementary equations
r� U ¼ 0;

r trace U þ dp � gð Þ ¼ 0
lead to the least-squares functional G2
G2ðU ;~u; pÞ ¼ k � m r � Uð ÞT þrp �~f k20 þ m2kr �~uþ dp � gk20 þ m2kU �r~uTk20
þ m2kr � Uk20 þ m2kr trace U þ dp � gð Þk20: ð31Þ
We note that trace U ¼ r �~u. In solving this functional the conditions (5) and (6) must be supplemented

with the boundary conditions
U � n̂ ¼ Gbðx; yÞ: ð32Þ

We let D be the distance to the nearest vertex of X. Then the further equation
D�1 trace U � gð Þ ¼ 0;
taken together with the equations of G2 for the Stokes case gives the system from which is generated the
least-squares functional which is designated G3 in [12]. The solution of the G3 formulation is found by look-

ing for the values of U ; ~u and p which minimise the functional
G3ðU ;~u; pÞ ¼ k � m r � Uð ÞT þrp �~f k20 þ m2kr �~u� gk20 þ m2kU �r~uTk20 þ m2kr � Uk20
þ m2kr trace U � gð Þk20 þ m2kD�1 trace U � gð Þk20: ð33Þ
The appropriate conditions are again (5), (6) and (32). We shall refer to these conditions as the enclosed

flow conditions for the G3 formulation.

In [12] coercivity and continuity bounds on the functionals (30), (31) and (33) are obtained for the case in
which ~f ¼ 0 and g ¼ 0. Following [12] we define the spaces
U 0 ¼ V 2 H 1 Xð Þn
2

: n̂� V ¼~0 on C
� �

;

U 1 ¼ V 2 U 0 : d trace V 2 L2 Xð Þ
� 	

;

V 1 ¼ L2 Xð Þn
2

� H 1
0 Xð Þn � L2

0 Xð Þ;
V 2 ¼ U 0 � H 1

0 Xð Þn � H 1 Xð Þ nR
� 	

;

V 3 ¼ U 1 � H 1
0 Xð Þn � H 1 Xð Þ nR

� 	
:

For the planar case the appropriate spaces are given by setting n = 2. The G1 functional (30) has the
bounds
1

C
m2kUk20 þ m2k~uk21 þ kpk20
� �

6 G1ðU ;~u; pÞ 8ðU ;~u; pÞ 2 V 1
and
G1ðU ;~u; pÞ 6 C m2kUk20 þ m2k~uk21 þ kpk20
� �

8ðU ;~u; pÞ 2 V 1:
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These hold provided the approximation to the velocity is at least quadratic. The G2 functional (31) sat-

isfies the bounds
1

C
m2kUk21 þ m2k~uk21 þ kpk21
� �

6 G2ðU ;~u; pÞ 8ðU ;~u; pÞ 2 V 2
and
G2ðU ;~u; pÞ 6 C m2kUk21 þ m2k~uk21 þ kpk21
� �

8ðU ;~u; pÞ 2 V 2:
These bounds on G2ðU ;~u; pÞ hold if the boundary of the region has continuity C1,1. The bounds on the

G3 functional (33) are
1

C
m2kUk21 þ m2kD�1 trace Uk20 þ m2k~uk21 þ kpk21
� �

6 G3ðU ;~u; pÞ 8ðU ;~u; pÞ 2 V 3 ð34Þ
and
G3ðU ;~u; pÞ 6 C m2kUk21 þ m2kD�1 trace Uk20 þ m2k~uk21 þ kpk21
� �

8ðU ;~u; pÞ 2 V 3: ð35Þ
The relations (34) and (35) are valid in convex polygons; see [12].

Another reformulation in which the gradients of the velocity also appear as variables is presented in [15],
where it is referred to as the acceleration–pressure formulation.
2.4. Equation weighting

An extension of the least-squares method for systems of equations allows for different weights in the

functional (2); see [2]. The functional (2) generalises to
XN eq

i¼1

W ikLiu� fik20; W i > 0:
This has a minimum when
Z
X

XN eq

i¼1

W iLiuLiv dX ¼
Z
X

XN eq

i¼1

W ifiLiv dX;
where v is an element of a test space V, with elements of the same order of continuity as the trial solutions

and which are homogeneous on the boundary C of X.
With the aim of more strongly enforcing mass conservation for solutions satisfying enclosed flow con-

ditions, we weight the appropriate terms in the various functionals. So the weighted J functional JW is
JW ¼ kmr� xþrp �~f k20 þ m2kx�r�~uk20 þ W m2kr �~uk20; ð36Þ
whilst the weighted G3 functional G3,W is
G3;W ¼ k � m r � Uð ÞT þrp �~f k20 þ W m2kr �~u� gk20 þ m2kU �r~uTk20 þ m2kr � Uk20
þ m2kr trace U � gð Þk20 þ m2kD�1 trace U � gð Þk20:
In dealing with the S functional, we follow [31,32] in weighting not only the residual of the mass-con-

servation equation (16) but also the residual of (15) by the same amount, so that the weighted S functional
takes the form
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SW ¼ � oU 1

ox
þ oU 2

oy
� 2m

oU 3

oy
� 2m

oU 4

ox
� f1

����
����
2

0

þ oU 1

oy
þ oU 2

ox
� 2m

oU 3

ox
þ 2m

oU 4

oy
� f2

����
����
2

0

þ W
oU 1

oy
� oU 2

ox
� f3

����
����
2

0

þ W 2m
oU 3

oy
� 2m

oU 4

ox
� f4

����
����
2

0

: ð37Þ
In our experience W must be reasonably large to have a substantial effect on the quality of the solution.
However, for a very large value ofW the resulting linear system becomes ill-conditioned. In the experiments

presented here we have chosen W = 103 but optimisation of this parameter may be possible.
3. Poiseuille flow in a long channel

We have obtained approximate solutions of the S, J and G3 formulations and the corresponding

weighted formulations for Poiseuille flow in the region [0,20] · [0, 1]. In the S formulation the analytical
solution is
U 1 ¼ m x2 þ y2 � 2Lx� y
� 	

;

U 2 ¼ m 2xy � 2Ly þ L� xð Þ;
U 3 ¼ 0;

U 4 ¼ yð1� yÞ:
The analytical solutions in the variables of the J and G formulations can also be written down in simple

forms. Throughout our calculations we set m = 1.
The elements we use are triangular and the interpolation is linear. A typical 8 · 4 grid is illustrated in

Fig. 1.

3.1. Solutions of the S formulation

For these results enclosed flow conditions (19) are enforced. We also set U1 = 0 and U2 = 20 at (0,0) and

U2 = 0 at (20,1). In Tables 1 and 2 we show the total flow across the lines x = {0,5,10,15,20}.

Table 1 shows that when using the S formulation a very large quantity of mass is lost in the middle of the
channel, even on highly refined grids. For example, in the solution on the 1280 · 64 over 20% of the flow is

lost in the middle of the region. Convergence in the velocity is quite slow between the grids; see the first two
Fig. 1. Union Jack grid of size 8 · 4.
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columns of results in Table 3. Even between highly refined grids the rate of convergence is much less than

the optimal order h2 in L2. With weighting, that is the SW formulation, much less flow is lost on all grids.

The flow in the middle of the channel is about 99.95% of the inflow in the solution on the 1280 · 64 grid; see

Table 2. We see from Table 3 that even between the coarsest grids the rate of convergence in the velocity is

approximately order h in H1 which is in accord with the theoretical asymptotic rates. Moreover, we observe
convergence of order h2 in L2.
3.2. Solutions of the J formulation

Using the J formulation and minimising the L2 functional (25) we get a very similar set of results to

those obtained with the S formulation. Table 4 shows that there is a large amount of mass lost in the

solution of the J formulation although slightly less than in the solution of the S formulation on a given

grid; compare Table 4 with Table 1. The velocities converge somewhat faster; compare Table 6 with
Table 3.

As before there is almost no mass lost in the solution obtained by minimising the JW functional,

especially on the more refined grids; see Table 5. We observe that the velocities converge at a rate of order

h in H1 and order h2 in L2; see Table 6. The rate of convergence in L2 is faster than the provable rate for

solutions of the velocity–vorticity–pressure system satisfying enclosed flow conditions: in this case with

linear elements we expect convergence only of order h in L2.
3.3. Solutions of the G3 formulation

These results are obtained by enforcing the enclosed flow conditions (5), (6) and (32) for Poiseuille flow.

We see that a large quantity of flow is lost in the solutions obtained by minimising the G3 functional (33);

see Table 7. The rate of convergence of the velocity in H1 between the finest grids on which we have

obtained solutions, the 320 · 16 and 640 · 32 grids, seems to be order h; see Table 9. The rate of conver-

gence in L2 between these grids is slightly greater than order h. These solutions are more accurate than those

obtained by minimising the S functional (17) or the J functional (25). In assessing the relative merits of each

solution process, attention must be paid to the fact that there are more variables at each node in the G3

formulation and overall more equations in the system.

Only a small proportion of the mass is lost between the inlet and the centre of the channel in the solution

of the G3,W formulation; see Table 8. Table 9 shows that the approximations to the velocities in the solution

of the G3,W functional are considerably more accurate than those in the solution of the unweighted func-

tional. They converge at a rate of order h in H1 and order h2 in L2.
Table 1

Axial flow in the solution of the S formulation

nx · ny Axial flow

x = 0 x = 5 x = 10 x = 15 x = 20

80 · 4 0.15625 0.00121 0.00002 0.00121 0.15625

160 · 8 0.16406 0.01034 0.00130 0.01034 0.16406

320 · 16 0.16602 0.04153 0.01870 0.04153 0.16602

640 · 32 0.16650 0.09433 0.07403 0.09433 0.16650

1280 · 64 0.16663 0.13931 0.13061 0.13931 0.16663



Table 2

Axial flow in the solution of the SW formulation

nx · ny Axial flow

x = 0 x = 5 x = 10 x = 15 x = 20

80 · 4 0.15625 0.14505 0.14140 0.14505 0.15625

160 · 8 0.16406 0.16074 0.15963 0.16074 0.16406

320 · 16 0.16602 0.16515 0.16486 0.16515 0.16602

640 · 32 0.16650 0.16628 0.16621 0.16628 0.16650

1280 · 64 0.16663 0.16657 0.16655 0.16657 0.16663

Table 3

Errors in the solutions of the S and SW formulations

nx · ny Errors in the solution of the S formulation Errors in the solution of the SW formulation

k~u�~uhk0;2 j~u�~uhj1;2 k~u�~uhk0;2 j~u�~uhj1;2
80 · 4 0.75294 2.38364 0.10060 0.66861

160 · 8 0.69802 2.21483 0.02739 0.32644

320 · 16 0.57080 1.80954 0.00700 0.16176

640 · 32 0.33930 1.07584 0.00176 0.08068

1280 · 64 0.12981 0.41230 0.00044 0.04031

Table 4

Axial flow in the solution of the J formulation

nx · ny Axial flow

x = 0 x = 5 x = 10 x = 15 x = 20

160 · 8 0.16406 0.04355 0.02112 0.04355 0.16406

320 · 16 0.16602 0.07930 0.05645 0.07930 0.16602

640 · 32 0.16650 0.12472 0.11172 0.12472 0.16650

1280 · 64 0.16663 0.15295 0.14847 0.15295 0.16663

Table 5

Axial flow in the solution of the JW formulation

nx · ny Axial flow

x = 0 x = 5 x = 10 x = 15 x = 20

160 · 8 0.16406 0.16290 0.16252 0.16290 0.16406

320 · 16 0.16602 0.16572 0.16563 0.16572 0.16602

640 · 32 0.16650 0.16643 0.16641 0.16643 0.16650

1280 · 64 0.16663 0.16661 0.16660 0.16661 0.16663
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3.4. Solutions of the S formulation with outflow conditions

In obtaining a solution of the S formulation we may also apply the boundary conditions
U 3 ¼ 0; U 4 ¼ yð1� yÞ on the line x ¼ 0;

U 3 ¼ 0; U 4 ¼ 0 on the line y ¼ 0;

U 3 ¼ 0; U 4 ¼ 0 on the line y ¼ 1;

U 2 ¼ 0; U 3 ¼ 0 on the line x ¼ 20:



Table 6

Errors in the solutions of the J and JW formulations

nx · ny Errors in the solution of the J formulation Errors in the solution of the JW formulation

k~u�~uhk0;2 j~u�~uhj1;2 k~u�~uhk0;2 j~u�~uhj1;2
160 · 8 0.56251 1.78766 0.01810 0.32314

320 · 16 0.40715 1.29284 0.00453 0.16138

640 · 32 0.19843 0.63131 0.00113 0.08067

1280 · 64 0.06523 0.20947 0.00028 0.04033

Table 7

Axial flow in the solution of the G3 formulation

nx · ny Axial flow

x = 0 x = 5 x = 10 x = 15 x = 20

80 · 4 0.15625 0.02770 0.00735 0.02770 0.15625

160 · 8 0.16406 0.04915 0.02060 0.04915 0.16406

320 · 16 0.16602 0.08917 0.06145 0.08917 0.16602

640 · 32 0.16650 0.13278 0.11845 0.13278 0.16650

Table 8

Axial flow in the solution of the G3,W formulation

nx · ny Axial flow

x = 0 x = 5 x = 10 x = 15 x = 20

80 · 4 0.15625 0.15192 0.15047 0.15192 0.15625

160 · 8 0.16406 0.16291 0.16253 0.16291 0.16406

320 · 16 0.16602 0.16573 0.16563 0.16573 0.16602

640 · 32 0.16650 0.16643 0.16641 0.16643 0.16650

Table 9

Errors in the solutions of the G3 and G3,W formulations

nx · ny Errors in the solution of the G3 formulation Errors in the solution of the G3,W formulation

k~u�~uhk0;2 j~u�~uhj1;2 k~u�~uhk0;2 j~u�~uhj1;2
80 · 4 0.62277 1.99036 0.07128 0.64894

160 · 8 0.53993 1.71754 0.01807 0.32313

320 · 16 0.36993 1.17598 0.00453 0.16138

640 · 32 0.16553 0.52809 0.00113 0.08067
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The fourth condition represents outflow or downstream stress conditions. It is also necessary to have one

further pointwise constraint for a unique solution; we choose to fix U1 = 0 at (0,0). With these conditions

the loss of mass is even more severe. For instance in the solution of the S formulation on the 1280 · 64 grid

the flow through the line x = 10 is only 56.6% of the inflow, whilst the flow through the outlet x = 20 is only
44.4% of the inflow. Again, using the weighted functional SW these poor results can be corrected. In this

case about 99.9% of the inflow passes through the line x = 10 and 99.8% through the outlet; see [10].
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3.5. A note on the grid configuration

We are indebted to one of our reviewers for querying our use of the Union Jack grid, illustrated in Fig. 1,

which is known to have special properties not necessarily possessed by other configurations; see for instance

[9,30]. Results for the SW functional on grids composed of unidirectional triangles are much poorer,
although results for the unweighted functionals and for the JW and G3,W functionals are not very different

on either form of grid. We have not fully investigated this variation in solutions of the SW formulation. We

note however that recomputing the results in [32] for biharmonic problems without weighting the form of

the grid was again not important, whereas with weighting a unidirectional grid gave much poorer results. It

seems likely that for a large value of the weight W the grid decomposition property discussed in [3,23,24]

becomes important. Thus it seems in solving the Stokes problem, when weighting seems essential, to be

clearly advisable to use the Union Jack grid or, in non-rectangular domains, grids which are topologically

equivalent; see [10].
3.6. Conditioning

Although the preceding results clearly show that weighting of certain terms can greatly improve the

accuracy of least-squares solutions the concern arises that this could increase significantly the condition

number of the linear systems. Table 10 gives estimated condition numbers for the linear systems arising

from the S and SW functionals (17) and (37) with the enclosed flow conditions (19) and those arising from

the J and JW functionals (25) and (36) satisfying the conditions (5) and (6). The condition numbers are in-
deed considerably greater after weighting. However we see that the condition numbers of the weighted sys-

tems increase at approximately order h�2 whereas the condition numbers of the unweighted systems shown

here increase faster than order h�2. Furthermore the rate of increase in the condition numbers of the un-

weighted functionals falls as the grid is refined and we may speculate that for finer grids than those shown

here the condition numbers for unweighted and weighted systems may be close together. We have also ob-

tained the condition numbers for the linear systems arising from the solution of the channel flow problem

by use of the G3 and G3,W functionals. The J system for a given grid is better conditioned than the G3 sys-

tem, which in turn is better conditioned than the S system. The condition numbers of the JW and G3,W sys-
tems for a given grid are similar and much smaller than the condition numbers for the SW system.
4. Higher order elements

We have used the S, J and G1 formulations and their weighted counterparts on a range of other test

problems including flow over a backward facing step, flow past a semicircular restriction and flow around
Table 10

Estimated condition numbers

Grid Condition numbers

S SW J JW

80 · 4 2.90 · 108 2.09 · 1010 6.42 · 106 4.55 · 108

160 · 8 2.96 · 109 8.23 · 1010 7.43 · 107 1.74 · 109

320 · 16 2.83 · 1010 3.31 · 1011 7.84 · 108 7.28 · 109

640 · 32 2.11 · 1011 1.36 · 1012 5.85 · 109 3.41 · 1010

1280 · 64 1.16 · 1012 5.65 · 1012 3.02 · 1010 1.80 · 1011
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a cylinder; see [10,11]. Just as with channel flow, using linear elements these functionals give poor results

but quite reasonable and encouraging results when weighting is employed. All these test problems are in

non-convex regions and the velocities are not in H2; as expected, the G2 and G3 results are very poor.

Few of the least-squares results published elsewhere have been obtained with such low order elements.

Hence the loss of mass we have seen in our solutions has not been observed to the same degree. It is impor-
tant to note that the J and G1 functionals are not H

1 equivalent and, as a result, the convergence theory has

only been developed for quadratic and higher order elements. We note that for the particular case of

Poiseuille flow the analytical solution is captured exactly with quadratic elements. However, we have also

observed severe loss of mass in solutions of the more complicated test problems even when quadratic or

biquadratic elements have been used.

4.1. Mesh-dependent weighting

From the inverse inequality
kV k1 6 Ch�1kV k0 ð38Þ

we can replace the functional (26) by one which incorporates mesh-dependent weights, namely
Jh ¼ kmr� xþrp �~f k20 þ m2h�2kx�r�~uk20 þ m2h�2kr �~uk20; ð39Þ

see [2,7,8,20]. This can be solved with H1 elements. In minimising (39) approximations to the velocity ~u
using quadratic or biquadratic elements converge at order h2 in H1. If the pressure p and vorticity x are

approximated using either linear or quadratic elements they converge at order h in H1 and order h2 in

L2; see [7]. So if the pressure and vorticity are approximated using quadratic or biquadratic elements con-
vergence rates in these variables are suboptimal.

We can also weight the mass conservation term in (39) with an additional factor to give
Jh;W ¼ kmr� xþrp �~f k20 þ m2h�2kx�r�~uk20 þ W m2h�2kr �~uk20; ð40Þ

see [20]. Generalising (38) a mesh-dependent functional arising from the G1 system for incompressible flow
is
G1;h ¼ h2k � m r � Uð ÞT þrp �~f k20 þ m2kr �~uk20 þ m2kU �r~uTk20; ð41Þ

and a corresponding weighted functional is
G1;h;W ¼ h2k � m r � Uð ÞT þrp �~f k20 þ W m2kr �~uk20 þ m2kU �r~uTk20; ð42Þ
see [8].
4.2. Backward facing step

Here, we present results for a backward facing step. The physical region is illustrated in Fig. 2. We place

the re-entrant corner at the origin so that our region is [�2,0] · [�1,0] [ [0,6] · [�1,1]. We have approx-

imated the solution of the S and SW functionals (17) and (37) and the above mesh-dependent functionals

(39)–(42) with biquadratic elements for all variables; we believe that being able to use the same elements for

all variables is one of the advantages of least-squares methods, even if approximations may then sometimes

be suboptimal in some variables. Our elements are square and of uniform size and h is the length of the

diagonal. We define a parameter ny such that the number of nodes on the inflow line x = �2 is ny + 1 so

that the total number of nodes in the region is 2ny · (ny + 1) + (6ny + 1) · (2ny + 1). The grid at ny = 4 is
shown in Fig. 3. In Tables 11–14 we show the axial flow through successive portions of the region.
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Fig. 2. Backward facing step.

Fig. 3. Planar backward facing step grid at ny = 4.

Table 11

Axial flow in the solution of the S and SW functionals with enclosed flow conditions

ny Axial flow

x = �2 x = 0 x = 3 x = 6

S SW S SW

4 0.16667 0.10837 0.16532 0.13574 0.16604 0.16667

8 0.16667 0.13361 0.16611 0.14913 0.16638 0.16667

16 0.16667 0.14942 0.16642 0.15753 0.16654 0.16667

32 0.16667 0.15811 0.16656 0.16214 0.16661 0.16667

Table 12

Axial flow in the solution of the Jh and Jh,W functionals

ny Axial flow

x = �2 x = 0 x = 3 x = 6

Jh Jh,W Jh Jh,W

4 0.16667 0.05786 0.16534 0.10781 0.16604 0.16667

8 0.16667 0.09273 0.16617 0.12724 0.16641 0.16667

16 0.16667 0.12364 0.16647 0.14379 0.16656 0.16667

32 0.16667 0.14443 0.16659 0.15487 0.16662 0.16667
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The Jh and G1, h formulations give quite similar results to each other, with considerably less flow lost in

the solution of the S formulation; contrast the appropriate columns in Table 11 with those in Tables 12

and 13. All solutions are poor although we acknowledge that the exponents we have applied to the



Table 14

Axial flow in the solution of the S and SW functionals with downstream stress conditions

ny Axial flow

x = �2 x = 0 x = 3 x = 6

S SW S SW S SW

4 0.16667 0.10255 0.16513 0.09919 0.16526 0.09919 0.16530

8 0.16667 0.12922 0.16602 0.12727 0.16600 0.12727 0.16600

16 0.16667 0.14678 0.16638 0.14577 0.16637 0.14577 0.16637

32 0.16667 0.15670 0.16654 0.15620 0.16653 0.15620 0.16653

Table 13

Axial flow in the solution of the G1, h and G1,h,W functionals

ny Axial flow

x = �2 x = 0 x = 3 x = 6

G1, h G1,h,W G1, h G1, h,W

4 0.16667 0.05694 0.16535 0.10851 0.16605 0.16667

8 0.16667 0.08863 0.16617 0.12532 0.16641 0.16667

16 0.16667 0.11892 0.16646 0.14137 0.16656 0.16667

32 0.16667 0.14122 0.16659 0.15319 0.16662 0.16667
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mesh-dependent factors may not be optimal for a problem in a non-convex domain; see [20]. All three

weighted formulations give approximately the same results; compare the results for the SW formulation

in Table 11 with those for the Jh,W and G1, h,W formulations in Tables 12 and 13, respectively. With down-

stream stress conditions the S formulation gives similar results to those for enclosed flow near the re-entrant

corner but fluid loss occurs right to the end of the channel; see Table 14. As a pictorial illustration of the

results in Figs. 4 and 5 we plot the stream functions of the S and SW formulations with enclosed flow con-

ditions for the grid ny = 8, so that there is a grid of 8 · 4 elements in the inlet section and a grid of 24 · 8

elements in the outlet section. The stream functions have been recovered by minimising the functional
Ss ¼ wx � U 3k k20 þ wy � U 4

�� ��2
0
:

These figures are typical since all three formulations give broadly similar results. The diverging contours

on entry and the converging contours on exit clearly show that much flow is lost in the middle of the pipe in

the unweighted case, whereas the parallel lines on entry and exit in the weighted case indicate the true

behaviour of the fluid.
Fig. 4. Stream function in the solution of the S formulation.



Fig. 5. Stream function in the solution of the SW formulation.
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The solutions of the G2 and G3 formulations do not converge at all in this domain, as we would expect

from the theory. The velocities in the analytical solution are not in H2(X) and therefore the components of

U as defined by (29) are not in H1(X).
5. Conclusion

The least-squares finite element method is in principle a very attractive way of simulating incompressible

Stokes flow. The linear systems which arise are symmetric and positive-definite; hence fast and simple direct

solvers, like banded Choleski, or indirect solvers, like the conjugate gradient method, can be used. Being

able to apply the latter in particular can be important in developing an efficient multigrid algorithm.

However, the results we show here make it clear that even for simple flows in convex domains lack of

mass conservation can make the approximations extremely inaccurate. All three formulations we have con-

sidered share this problem of loss of flow.
Our results show this can be considerably reduced by penalising other terms in the functionals relative to

that representing conservation of mass. For this case, the approximations to the velocities in the solutions

obtained by minimising the weighted functionals converge at optimal rates in a convex domain.

In the solution of the J formulation, mass may be conserved if certain non-physical conditions are ap-

plied; see [8]. We observe a similar phenomenon with the S formulation; see the Appendix.
Appendix A. Boundary conditions for which mass is conserved

We have obtained solutions of the S formulation in the long channel which satisfy the boundary condi-

tions (20). In this case the normal velocity and the tangential stress are specified on the boundary. Results

for this case are presented in the following tables.

We see from Table A.1 that no mass is lost when these conditions are specified. Furthermore the veloc-

ities converge at order h2 in L2 and order h in H1 between all the grids, even with equal weights on each
Table A.1

Axial flow in the solution of the S functional

nx · ny Axial flow

x = 0 x = 5 x = 10 x = 15 x = 20

80 · 4 0.15625 0.15625 0.15625 0.15625 0.15625

160 · 8 0.16406 0.16406 0.16406 0.16406 0.16406

320 · 16 0.16602 0.16602 0.16602 0.16602 0.16602

640 · 32 0.16650 0.16650 0.16650 0.16650 0.16650

1280 · 64 0.16663 0.16663 0.16663 0.16663 0.16663



Table A.2

Errors in the solution of the S functional

nx · ny Errors in the solution of the S functional

k~u�~uhk0;2 j~u�~uhj1;2
80 · 4 0.04759 0.59211

160 · 8 0.01189 0.29593

320 · 16 0.00297 0.14793

640 · 32 7.42 · 10�4 0.07396

1280 · 64 1.86 · 10�4 0.03698
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equation term; see Table A.2. We have also found that mass is conserved in the solutions when we enforce

the boundary conditions (21), the tangential velocity and normal stress; see [10].

It is known that solutions of the planar J formulation display no loss of mass when the pressure together

with either~u � n̂ or~u � ŝ are given on the boundary and that furthermore the J functional (25) is equivalent to

an H1 norm when these conditions are applied; see [6,7,8,25].

However none of these conditions are canonical ones for the second-order Stokes system (3) and (4).

Additionally they cannot usually be deduced for a given physical problem. Hence their practical uses are

very limited.
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